direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×D5⋊C8, Dic5.14C24, C5⋊C8⋊4C23, C5⋊1(C23×C8), D5⋊(C22×C8), D10⋊11(C2×C8), C10⋊1(C22×C8), (C22×D5)⋊7C8, C2.1(C23×F5), C10.1(C23×C4), C4.57(C22×F5), C23.64(C2×F5), (C22×C4).28F5, (C22×C20).36C4, C20.97(C22×C4), (C23×D5).17C4, (C4×D5).90C23, D10.43(C22×C4), C22.54(C22×F5), Dic5.43(C22×C4), (C2×Dic5).361C23, (C22×Dic5).281C22, (C2×C10)⋊4(C2×C8), (C2×C4×D5).47C4, (C22×C5⋊C8)⋊11C2, (C2×C5⋊C8)⋊14C22, (C4×D5).96(C2×C4), (C2×C4).172(C2×F5), (D5×C22×C4).36C2, (C2×C20).180(C2×C4), (C2×C4×D5).415C22, (C22×C10).77(C2×C4), (C2×C10).95(C22×C4), (C2×Dic5).197(C2×C4), (C22×D5).131(C2×C4), SmallGroup(320,1587)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C5⋊C8 — C2×C5⋊C8 — C22×C5⋊C8 — C22×D5⋊C8 |
C5 — C22×D5⋊C8 |
Generators and relations for C22×D5⋊C8
G = < a,b,c,d,e | a2=b2=c5=d2=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ece-1=c3, ede-1=c2d >
Subgroups: 906 in 338 conjugacy classes, 196 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, C23, D5, C10, C10, C2×C8, C22×C4, C22×C4, C24, Dic5, Dic5, C20, D10, C2×C10, C22×C8, C23×C4, C5⋊C8, C4×D5, C2×Dic5, C2×C20, C22×D5, C22×C10, C23×C8, D5⋊C8, C2×C5⋊C8, C2×C4×D5, C22×Dic5, C22×C20, C23×D5, C2×D5⋊C8, C22×C5⋊C8, D5×C22×C4, C22×D5⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C2×C8, C22×C4, C24, F5, C22×C8, C23×C4, C2×F5, C23×C8, D5⋊C8, C22×F5, C2×D5⋊C8, C23×F5, C22×D5⋊C8
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 81)(10 82)(11 83)(12 84)(13 85)(14 86)(15 87)(16 88)(17 77)(18 78)(19 79)(20 80)(21 73)(22 74)(23 75)(24 76)(25 67)(26 68)(27 69)(28 70)(29 71)(30 72)(31 65)(32 66)(33 55)(34 56)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(57 111)(58 112)(59 105)(60 106)(61 107)(62 108)(63 109)(64 110)(97 145)(98 146)(99 147)(100 148)(101 149)(102 150)(103 151)(104 152)(113 137)(114 138)(115 139)(116 140)(117 141)(118 142)(119 143)(120 144)(121 159)(122 160)(123 153)(124 154)(125 155)(126 156)(127 157)(128 158)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 25)(16 26)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 57)(40 58)(41 99)(42 100)(43 101)(44 102)(45 103)(46 104)(47 97)(48 98)(49 107)(50 108)(51 109)(52 110)(53 111)(54 112)(55 105)(56 106)(65 85)(66 86)(67 87)(68 88)(69 81)(70 82)(71 83)(72 84)(73 93)(74 94)(75 95)(76 96)(77 89)(78 90)(79 91)(80 92)(113 155)(114 156)(115 157)(116 158)(117 159)(118 160)(119 153)(120 154)(121 141)(122 142)(123 143)(124 144)(125 137)(126 138)(127 139)(128 140)(129 147)(130 148)(131 149)(132 150)(133 151)(134 152)(135 145)(136 146)
(1 45 155 33 81)(2 34 46 82 156)(3 83 35 157 47)(4 158 84 48 36)(5 41 159 37 85)(6 38 42 86 160)(7 87 39 153 43)(8 154 88 44 40)(9 89 133 125 55)(10 126 90 56 134)(11 49 127 135 91)(12 136 50 92 128)(13 93 129 121 51)(14 122 94 52 130)(15 53 123 131 95)(16 132 54 96 124)(17 103 113 59 69)(18 60 104 70 114)(19 71 61 115 97)(20 116 72 98 62)(21 99 117 63 65)(22 64 100 66 118)(23 67 57 119 101)(24 120 68 102 58)(25 111 143 149 75)(26 150 112 76 144)(27 77 151 137 105)(28 138 78 106 152)(29 107 139 145 79)(30 146 108 80 140)(31 73 147 141 109)(32 142 74 110 148)
(1 81)(2 156)(3 47)(4 36)(5 85)(6 160)(7 43)(8 40)(9 89)(10 56)(11 127)(13 93)(14 52)(15 123)(17 69)(18 114)(19 97)(20 62)(21 65)(22 118)(23 101)(24 58)(25 143)(27 77)(28 106)(29 139)(31 73)(32 110)(33 45)(34 82)(37 41)(38 86)(44 154)(48 158)(50 92)(51 129)(54 96)(55 133)(59 103)(60 70)(63 99)(64 66)(67 119)(71 115)(74 142)(75 149)(76 112)(78 138)(79 145)(80 108)(83 157)(87 153)(90 126)(91 135)(94 122)(95 131)(98 116)(102 120)(105 151)(109 147)(124 132)(128 136)(140 146)(144 150)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,77)(18,78)(19,79)(20,80)(21,73)(22,74)(23,75)(24,76)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,65)(32,66)(33,55)(34,56)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(57,111)(58,112)(59,105)(60,106)(61,107)(62,108)(63,109)(64,110)(97,145)(98,146)(99,147)(100,148)(101,149)(102,150)(103,151)(104,152)(113,137)(114,138)(115,139)(116,140)(117,141)(118,142)(119,143)(120,144)(121,159)(122,160)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,105)(56,106)(65,85)(66,86)(67,87)(68,88)(69,81)(70,82)(71,83)(72,84)(73,93)(74,94)(75,95)(76,96)(77,89)(78,90)(79,91)(80,92)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,153)(120,154)(121,141)(122,142)(123,143)(124,144)(125,137)(126,138)(127,139)(128,140)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,145)(136,146), (1,45,155,33,81)(2,34,46,82,156)(3,83,35,157,47)(4,158,84,48,36)(5,41,159,37,85)(6,38,42,86,160)(7,87,39,153,43)(8,154,88,44,40)(9,89,133,125,55)(10,126,90,56,134)(11,49,127,135,91)(12,136,50,92,128)(13,93,129,121,51)(14,122,94,52,130)(15,53,123,131,95)(16,132,54,96,124)(17,103,113,59,69)(18,60,104,70,114)(19,71,61,115,97)(20,116,72,98,62)(21,99,117,63,65)(22,64,100,66,118)(23,67,57,119,101)(24,120,68,102,58)(25,111,143,149,75)(26,150,112,76,144)(27,77,151,137,105)(28,138,78,106,152)(29,107,139,145,79)(30,146,108,80,140)(31,73,147,141,109)(32,142,74,110,148), (1,81)(2,156)(3,47)(4,36)(5,85)(6,160)(7,43)(8,40)(9,89)(10,56)(11,127)(13,93)(14,52)(15,123)(17,69)(18,114)(19,97)(20,62)(21,65)(22,118)(23,101)(24,58)(25,143)(27,77)(28,106)(29,139)(31,73)(32,110)(33,45)(34,82)(37,41)(38,86)(44,154)(48,158)(50,92)(51,129)(54,96)(55,133)(59,103)(60,70)(63,99)(64,66)(67,119)(71,115)(74,142)(75,149)(76,112)(78,138)(79,145)(80,108)(83,157)(87,153)(90,126)(91,135)(94,122)(95,131)(98,116)(102,120)(105,151)(109,147)(124,132)(128,136)(140,146)(144,150), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,77)(18,78)(19,79)(20,80)(21,73)(22,74)(23,75)(24,76)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,65)(32,66)(33,55)(34,56)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(57,111)(58,112)(59,105)(60,106)(61,107)(62,108)(63,109)(64,110)(97,145)(98,146)(99,147)(100,148)(101,149)(102,150)(103,151)(104,152)(113,137)(114,138)(115,139)(116,140)(117,141)(118,142)(119,143)(120,144)(121,159)(122,160)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,105)(56,106)(65,85)(66,86)(67,87)(68,88)(69,81)(70,82)(71,83)(72,84)(73,93)(74,94)(75,95)(76,96)(77,89)(78,90)(79,91)(80,92)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,153)(120,154)(121,141)(122,142)(123,143)(124,144)(125,137)(126,138)(127,139)(128,140)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,145)(136,146), (1,45,155,33,81)(2,34,46,82,156)(3,83,35,157,47)(4,158,84,48,36)(5,41,159,37,85)(6,38,42,86,160)(7,87,39,153,43)(8,154,88,44,40)(9,89,133,125,55)(10,126,90,56,134)(11,49,127,135,91)(12,136,50,92,128)(13,93,129,121,51)(14,122,94,52,130)(15,53,123,131,95)(16,132,54,96,124)(17,103,113,59,69)(18,60,104,70,114)(19,71,61,115,97)(20,116,72,98,62)(21,99,117,63,65)(22,64,100,66,118)(23,67,57,119,101)(24,120,68,102,58)(25,111,143,149,75)(26,150,112,76,144)(27,77,151,137,105)(28,138,78,106,152)(29,107,139,145,79)(30,146,108,80,140)(31,73,147,141,109)(32,142,74,110,148), (1,81)(2,156)(3,47)(4,36)(5,85)(6,160)(7,43)(8,40)(9,89)(10,56)(11,127)(13,93)(14,52)(15,123)(17,69)(18,114)(19,97)(20,62)(21,65)(22,118)(23,101)(24,58)(25,143)(27,77)(28,106)(29,139)(31,73)(32,110)(33,45)(34,82)(37,41)(38,86)(44,154)(48,158)(50,92)(51,129)(54,96)(55,133)(59,103)(60,70)(63,99)(64,66)(67,119)(71,115)(74,142)(75,149)(76,112)(78,138)(79,145)(80,108)(83,157)(87,153)(90,126)(91,135)(94,122)(95,131)(98,116)(102,120)(105,151)(109,147)(124,132)(128,136)(140,146)(144,150), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,81),(10,82),(11,83),(12,84),(13,85),(14,86),(15,87),(16,88),(17,77),(18,78),(19,79),(20,80),(21,73),(22,74),(23,75),(24,76),(25,67),(26,68),(27,69),(28,70),(29,71),(30,72),(31,65),(32,66),(33,55),(34,56),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(57,111),(58,112),(59,105),(60,106),(61,107),(62,108),(63,109),(64,110),(97,145),(98,146),(99,147),(100,148),(101,149),(102,150),(103,151),(104,152),(113,137),(114,138),(115,139),(116,140),(117,141),(118,142),(119,143),(120,144),(121,159),(122,160),(123,153),(124,154),(125,155),(126,156),(127,157),(128,158)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,25),(16,26),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,57),(40,58),(41,99),(42,100),(43,101),(44,102),(45,103),(46,104),(47,97),(48,98),(49,107),(50,108),(51,109),(52,110),(53,111),(54,112),(55,105),(56,106),(65,85),(66,86),(67,87),(68,88),(69,81),(70,82),(71,83),(72,84),(73,93),(74,94),(75,95),(76,96),(77,89),(78,90),(79,91),(80,92),(113,155),(114,156),(115,157),(116,158),(117,159),(118,160),(119,153),(120,154),(121,141),(122,142),(123,143),(124,144),(125,137),(126,138),(127,139),(128,140),(129,147),(130,148),(131,149),(132,150),(133,151),(134,152),(135,145),(136,146)], [(1,45,155,33,81),(2,34,46,82,156),(3,83,35,157,47),(4,158,84,48,36),(5,41,159,37,85),(6,38,42,86,160),(7,87,39,153,43),(8,154,88,44,40),(9,89,133,125,55),(10,126,90,56,134),(11,49,127,135,91),(12,136,50,92,128),(13,93,129,121,51),(14,122,94,52,130),(15,53,123,131,95),(16,132,54,96,124),(17,103,113,59,69),(18,60,104,70,114),(19,71,61,115,97),(20,116,72,98,62),(21,99,117,63,65),(22,64,100,66,118),(23,67,57,119,101),(24,120,68,102,58),(25,111,143,149,75),(26,150,112,76,144),(27,77,151,137,105),(28,138,78,106,152),(29,107,139,145,79),(30,146,108,80,140),(31,73,147,141,109),(32,142,74,110,148)], [(1,81),(2,156),(3,47),(4,36),(5,85),(6,160),(7,43),(8,40),(9,89),(10,56),(11,127),(13,93),(14,52),(15,123),(17,69),(18,114),(19,97),(20,62),(21,65),(22,118),(23,101),(24,58),(25,143),(27,77),(28,106),(29,139),(31,73),(32,110),(33,45),(34,82),(37,41),(38,86),(44,154),(48,158),(50,92),(51,129),(54,96),(55,133),(59,103),(60,70),(63,99),(64,66),(67,119),(71,115),(74,142),(75,149),(76,112),(78,138),(79,145),(80,108),(83,157),(87,153),(90,126),(91,135),(94,122),(95,131),(98,116),(102,120),(105,151),(109,147),(124,132),(128,136),(140,146),(144,150)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
80 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4H | 4I | ··· | 4P | 5 | 8A | ··· | 8AF | 10A | ··· | 10G | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 1 | ··· | 1 | 5 | ··· | 5 | 4 | 5 | ··· | 5 | 4 | ··· | 4 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | F5 | C2×F5 | C2×F5 | D5⋊C8 |
kernel | C22×D5⋊C8 | C2×D5⋊C8 | C22×C5⋊C8 | D5×C22×C4 | C2×C4×D5 | C22×C20 | C23×D5 | C22×D5 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 2 | 1 | 12 | 2 | 2 | 32 | 1 | 6 | 1 | 8 |
Matrix representation of C22×D5⋊C8 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 38 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 39 | 38 | 0 |
0 | 0 | 40 | 39 | 0 | 2 |
0 | 0 | 2 | 0 | 39 | 40 |
0 | 0 | 0 | 38 | 39 | 2 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,40,40,40,40],[1,0,0,0,0,0,0,38,0,0,0,0,0,0,2,40,2,0,0,0,39,39,0,38,0,0,38,0,39,39,0,0,0,2,40,2] >;
C22×D5⋊C8 in GAP, Magma, Sage, TeX
C_2^2\times D_5\rtimes C_8
% in TeX
G:=Group("C2^2xD5:C8");
// GroupNames label
G:=SmallGroup(320,1587);
// by ID
G=gap.SmallGroup(320,1587);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,136,102,6278,818]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^5=d^2=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,e*c*e^-1=c^3,e*d*e^-1=c^2*d>;
// generators/relations